Physics 513, Quantum Field Theory
 Examination 1
 Due Tuesday, $28^{\text {th }}$ October 2003
 Jacob Lewis Bourjaily
 University of Michigan, Department of Physics, Ann Arbor, MI 48109-1120

1. a) We are to verify that in the Schödinger picture we may write the total momentum operator,

$$
\mathbf{P}=-\int d^{3} x \pi(\mathbf{x}) \nabla \phi(\mathbf{x})
$$

in terms of ladder operators as

$$
\mathbf{P}=\int \frac{d^{3} p}{(2 \pi)^{3}} \mathbf{p} a_{\mathbf{p}}^{\dagger} a_{\mathbf{p}}
$$

Recall that in the Schrödinger picture, we have the following expansions for the fields ϕ and π in terms of the bosonic ladder operators

$$
\begin{align*}
& \phi(\mathbf{x})=\int \frac{d^{3} p}{(2 \pi)^{3}} \frac{1}{\sqrt{2 E_{\mathbf{p}}}} e^{i \mathbf{p x}}\left(a_{\mathbf{p}}+a_{-\mathbf{p}}^{\dagger}\right) \tag{1.1}\\
& \pi(\mathbf{x})=\int \frac{d^{3} p}{(2 \pi)^{3}}(-i) \sqrt{\frac{E_{\mathbf{p}}}{2}} e^{i \mathbf{p x}}\left(a_{\mathbf{p}}-a_{-\mathbf{p}}^{\dagger}\right) \tag{1.2}
\end{align*}
$$

To begin our derivation, let us compute $\vec{\nabla} \phi(\mathbf{x})$.

$$
\begin{aligned}
\nabla \phi(\mathbf{x}) & =\nabla \int \frac{d^{3} p}{(2 \pi)^{3}} \frac{1}{\sqrt{2 E_{\mathbf{p}}}}\left(a_{\mathbf{p}} e^{i \mathbf{p x}}+a_{\mathbf{p}}^{\dagger} e^{-i \mathbf{p} \mathbf{x}}\right) \\
& =\int \frac{d^{3} p}{(2 \pi)^{3}} \frac{1}{\sqrt{2 E_{\mathbf{p}}}}\left(i \mathbf{p} a_{\mathbf{p}} e^{i \mathbf{p x}}-i \mathbf{p} a_{\mathbf{p}}^{\dagger} e^{-i \mathbf{p x}}\right) \\
& =\int \frac{d^{3} p}{(2 \pi)^{3}} \frac{1}{\sqrt{2 E_{\mathbf{p}}}} i \mathbf{p} e^{i \mathbf{p x}}\left(a_{\mathbf{p}}-a_{-\mathbf{p}}^{\dagger}\right)
\end{aligned}
$$

Using this and (1.2) we may write the expression for \mathbf{P} directly.

$$
\begin{aligned}
\mathbf{P} & =-\int d^{3} x \pi(\mathbf{x}) \nabla \phi(\mathbf{x}) \\
& =-\int d^{3} x \frac{d^{3} k d^{3} p}{(2 \pi)^{6}} \frac{1}{2} \sqrt{\frac{E_{\mathbf{k}}}{E_{\mathbf{p}}}} \mathbf{p} e^{i(\mathbf{p}+\mathbf{k}) \mathbf{x}}\left(a_{\mathbf{k}}-a_{-\mathbf{k}}^{\dagger}\right)\left(a_{\mathbf{p}}-a_{-\mathbf{p}}^{\dagger}\right) \\
& =\int \frac{d^{3} k d^{3} p}{(2 \pi)^{6}} \frac{-1}{2} \sqrt{\frac{E_{\mathbf{k}}}{E_{\mathbf{p}}}} \mathbf{p}(2 \pi)^{3} \delta^{(3)}(\mathbf{p}+\mathbf{k})\left(a_{\mathbf{k}}-a_{-\mathbf{k}}^{\dagger}\right)\left(a_{\mathbf{p}}-a_{-\mathbf{p}}^{\dagger}\right), \\
& =\int \frac{d^{3} p}{(2 \pi)^{3}} \frac{1}{2} \mathbf{p}\left(a_{\mathbf{p}}^{\dagger}-a_{-\mathbf{p}}\right)\left(a_{\mathbf{p}}-a_{-\mathbf{p}}^{\dagger}\right)
\end{aligned}
$$

Using symmetry we may show that $a_{-\mathbf{p}} a_{-\mathbf{p}}^{\dagger}=a_{\mathbf{p}} a_{\mathbf{p}}^{\dagger}$. With this, our total momentum becomes,

$$
\mathbf{P}=\int \frac{d^{3} p}{(2 \pi)^{3}} \frac{1}{2} \mathbf{p}\left(a_{\mathbf{p}}^{\dagger} a_{\mathbf{p}}+a_{\mathbf{p}} a_{\mathbf{p}}^{\dagger}\right)
$$

By adding and then subtracting $a_{\mathbf{p}}^{\dagger} a_{\mathbf{p}}$ inside the parenthesis, one sees that

$$
\begin{aligned}
\mathbf{P} & =\int \frac{d^{3} p}{(2 \pi)^{3}} \frac{1}{2} \mathbf{p}\left(2 a_{\mathbf{p}}^{\dagger} a_{\mathbf{p}}+\left[a_{\mathbf{p}}, a_{\mathbf{p}}^{\dagger}\right]\right) \\
& =\int \frac{d^{3} p}{(2 \pi)^{3}} \mathbf{p}\left(a_{\mathbf{p}}^{\dagger} a_{\mathbf{p}}+\frac{1}{2}\left[a_{\mathbf{p}}, a_{\mathbf{p}}^{\dagger}\right]\right)
\end{aligned}
$$

Unfortunately, we have precisely the same problem that we had with the Hamiltonian: there is an infinite 'baseline' momentum. Of course, our 'justification' here will be identical to the one offered in that case and so

$$
\begin{equation*}
\therefore \mathbf{P}=\int \frac{d^{3} p}{(2 \pi)^{3}} \mathbf{p} a_{\mathbf{p}}^{\dagger} a_{\mathbf{p}} \tag{1.3}
\end{equation*}
$$

b) We are to verify that the Dirac charge operator,

$$
Q=\int d^{3} x \psi^{\dagger}(x) \psi(x)
$$

may be written in terms of ladder operators as

$$
Q=\int \frac{d^{3} p}{(2 \pi)^{3}} \sum_{s}\left(a_{\mathbf{p}}^{s \dagger} a_{\mathbf{p}}^{s}-b_{\mathbf{p}}^{s \dagger} b_{\mathbf{p}}^{s}\right) .
$$

Recall that we can expand our Dirac ψ 's in terms of fermionic ladder operators.

$$
\begin{align*}
& \psi_{a}(x)=\int \frac{d^{3} p}{(2 \pi)^{3}} \frac{1}{\sqrt{2 E_{\mathbf{p}}}} e^{i \mathbf{p x}} \sum_{s}\left(a_{\mathbf{p}}^{s} u_{a}^{s}(\mathbf{p})+b_{-\mathbf{p}}^{s \dagger} v_{a}^{s}(-\mathbf{p})\right) \tag{1.4}\\
& \psi_{b}(x)^{\dagger}=\int \frac{d^{3} p}{(2 \pi)^{3}} \frac{1}{\sqrt{2 E_{\mathbf{p}}}} e^{-i \mathbf{p x}} \sum_{r}\left(a_{\mathbf{p}}^{r \dagger} u_{b}^{r \dagger}(\mathbf{p})+b_{-\mathbf{p}}^{r} v_{b}^{r \dagger}(-\mathbf{p})\right) \tag{1.5}
\end{align*}
$$

Therefore, we can compute Q by writing out its terms explicitly.

$$
\begin{aligned}
Q & =\int d^{3} x \psi^{\dagger}(x) \psi(x), \\
& =\int d^{3} x \frac{d^{3} k d^{3} p}{(2 \pi)^{6}} \frac{1}{2 \sqrt{E_{\mathbf{k}} E_{\mathbf{p}}}} e^{i(\mathbf{p}-\mathbf{k}) \mathbf{x}} \sum_{r, s}\left[\left(a_{\mathbf{k}}^{r \dagger} u_{b}^{r \dagger}(\mathbf{k})+b_{-\mathbf{k}}^{r} v_{b}^{r \dagger}(-\mathbf{k})\right)\left(a_{\mathbf{p}}^{s} u_{a}^{s}(\mathbf{p})+b_{-\mathbf{p}}^{s \dagger} v_{a}^{s}(-\mathbf{p})\right)\right] \\
& =\int \frac{d^{3} k d^{3} p}{(2 \pi)^{6}} \frac{1}{2 \sqrt{E_{\mathbf{k}} E_{\mathbf{p}}}}(2 \pi)^{3} \delta^{(3)}(\mathbf{p}-\mathbf{k}) \sum_{r, s}\left[\left(a_{\mathbf{k}}^{r \dagger} u_{b}^{r \dagger}(\mathbf{k})+b_{-\mathbf{k}}^{r} v_{b}^{r \dagger}(-\mathbf{k})\right)\left(a_{\mathbf{p}}^{s} u_{a}^{s}(\mathbf{p})+b_{-\mathbf{p}}^{s \dagger} v_{a}^{s}(-\mathbf{p})\right)\right], \\
& =\int \frac{d^{3} p}{(2 \pi)^{3}} \frac{1}{2 E_{\mathbf{p}}} \sum_{r, s}\left[\left(a_{\mathbf{p}}^{r \dagger} u_{b}^{r \dagger}(\mathbf{p})+b_{-\mathbf{p}}^{r} v_{b}^{r \dagger}(-\mathbf{p})\right)\left(a_{\mathbf{p}}^{s} u_{a}^{s}(\mathbf{p})+b_{-\mathbf{p}}^{s \dagger} v_{a}^{s}(-\mathbf{p})\right)\right], \\
& =\int \frac{d^{3} p}{(2 \pi)^{3}} \frac{1}{2 E_{\mathbf{p}}} \sum_{r, s}\left(a_{\mathbf{p}}^{r \dagger} a_{\mathbf{p}}^{s} u_{b}^{r \dagger}(\mathbf{p}) u_{a}^{s}(\mathbf{p})+a_{\mathbf{p}}^{r \dagger} b_{-\mathbf{p}}^{s \dagger} u_{b}^{r \dagger}(\mathbf{p}) v_{a}^{s}(-\mathbf{p})\right. \\
& =\int \frac{d^{3} p}{(2 \pi)^{3}} \frac{1}{2 E_{\mathbf{p}}} \sum_{r, s}\left(a_{-\mathbf{p}}^{r \dagger} a_{\mathbf{p}}^{s} v_{b}^{r \dagger}(-\mathbf{p}) u_{a}^{s}(\mathbf{p})+b_{-\mathbf{p}}^{r} u_{b}^{r \dagger}(\mathbf{p}) u_{a}^{s \dagger}(\mathbf{p})+b_{-\mathbf{p}}^{r} v_{b}^{r \dagger}(-\mathbf{p}) v_{a}^{s}(-\mathbf{p})\right) \\
& =\int \frac{d^{3} p}{(2 \pi)^{3}} \frac{1}{2 E_{\mathbf{p}}^{r \dagger}} 2 E_{\mathbf{p}} \delta^{r s} \sum_{r, s}\left(a_{\mathbf{p}}^{r \dagger} v_{a}^{s}(-\mathbf{p})\right), \\
& =\int \frac{d^{3} p}{(2 \pi)^{3}} \sum_{s}\left(a_{\mathbf{p}}^{s \dagger} a_{\mathbf{p}}^{s \dagger} b_{-\mathbf{p}}^{s \dagger}\right), \\
& \left.b_{-\mathbf{p}}^{s} b_{-\mathbf{p}}^{s \dagger}\right),
\end{aligned}
$$

We note that by symmetry $b_{-\mathbf{p}}^{s} b_{-\mathbf{p}}^{s \dagger}=b_{\mathbf{p}}^{s} b_{\mathbf{p}}^{s \dagger}$. By using its anticommutation relation to rewrite $b_{\mathbf{p}}^{s} b_{\mathbf{p}}^{s \dagger}$ and then dropping the infinite 'baseline' energy as we did in part (a), we see that

$$
\begin{equation*}
\therefore Q=\int \frac{d^{3} p}{(2 \pi)^{3}} \sum_{s}\left(a_{\mathbf{p}}^{s \dagger} a_{\mathbf{p}}^{s}-b_{\mathbf{p}}^{s \dagger} b_{\mathbf{p}}^{s}\right) \tag{1.6}
\end{equation*}
$$

2. a) We are to show that the matrices

$$
\left(\mathcal{J}^{\mu \nu}\right)_{\alpha \beta}=i\left(\delta_{\alpha}^{\mu} \delta^{\nu}{ }_{\beta}-\delta^{\mu}{ }_{\beta} \delta^{\nu}{ }_{\alpha}\right),
$$

generate the Lorentz algebra,

$$
\left[\mathcal{J}^{\mu \nu}, \mathcal{J}^{\rho \sigma}\right]=i\left(g^{\nu \rho} \mathcal{J}^{\mu \sigma}-g^{\mu \rho} \mathcal{J}^{\nu \sigma}-g^{\nu \sigma} \mathcal{J}^{\mu \rho}+g^{\mu \sigma} \mathcal{J}^{\nu \rho}\right)
$$

We are reminded that matrix multiplication is given by $(A B)_{\alpha \gamma}=A_{\alpha \beta} B_{\gamma}^{\beta}$. Recall that in homework 5.1, we showed that

$$
\left(\mathcal{J}^{\mu \nu}\right)^{\alpha}{ }_{\beta}=i\left(g^{\mu \alpha} \delta_{\beta}^{\nu}-g^{\nu \alpha} \delta_{\beta}^{\mu}\right) .
$$

Let us proceed directly to demonstrate the Lorentz algebra.

$$
\begin{align*}
& {\left[\mathcal{J}^{\mu \nu}, \mathcal{J}^{\rho \sigma}\right]=-\left(\delta^{\mu}{ }_{\alpha} \delta^{\nu}{ }_{\beta}-\delta^{\mu}{ }_{\beta} \delta^{\nu}{ }_{\alpha}\right)\left(g^{\rho \beta} \delta^{\sigma}{ }_{\gamma}-g^{\sigma \beta} \delta^{\rho}{ }_{\gamma}\right)+\left(\delta^{\rho}{ }_{\alpha} \delta^{\sigma}{ }_{\beta}-\delta^{\rho}{ }_{\beta} \delta^{\sigma}{ }_{\alpha}\right)\left(g^{\mu \beta} \delta^{\nu}{ }_{\gamma}-g^{\nu \beta} \delta^{\mu}{ }_{\gamma}\right),} \\
& =-\underbrace{\delta_{\alpha}^{\mu} \delta^{\nu}{ }_{\beta} g^{\rho \beta} \delta_{\gamma}^{\sigma}}_{1}+\underbrace{\delta_{\alpha}^{\mu} \delta_{\beta}{ }_{\beta} g^{\sigma \beta}{ }^{\rho}{ }_{\gamma}{ }_{\gamma}}_{2}+\underbrace{\delta^{\mu}{ }_{\beta} \delta^{\nu}{ }_{\alpha} g^{\rho \beta} \delta^{\sigma}{ }_{\gamma}}_{3}-\underbrace{\delta_{\beta}^{\mu} \delta^{\nu}{ }_{\alpha} g^{\sigma \beta} \delta^{\rho}{ }_{\gamma}}_{4} \\
& +\underbrace{\delta^{\rho}{ }_{\alpha} \delta^{\sigma}{ }_{\beta} g^{\mu \beta} \delta_{\gamma}^{\nu}}_{5}-\underbrace{\delta_{\alpha}^{\rho} \delta_{\beta}^{\sigma}{ }_{\beta}{ }^{\nu \beta} \delta^{\mu}{ }_{\gamma}}_{6}-\underbrace{\delta_{\beta}^{\rho} \delta^{\sigma}{ }_{\alpha} g^{\mu \beta} \delta_{\gamma}^{\nu}}_{7}{ }_{7}+\underbrace{\delta_{\beta}^{\rho}{ }_{\beta} \delta_{\alpha} g^{\nu \beta} \delta_{\gamma}^{\mu}}_{8}, \\
& =-(\underbrace{\delta^{\mu}{ }_{\alpha} \delta^{\nu}{ }_{\beta} g^{\rho \beta} \delta_{\gamma}^{\sigma}-\delta^{\rho}{ }_{\beta} \delta^{\sigma}{ }_{\alpha} g^{\nu \beta} \delta_{\gamma}^{\mu}}_{1 \& 8}) g^{\nu \rho}+(\underbrace{\delta_{\alpha}^{\mu} \delta_{\beta}{ }_{\beta} g^{\sigma \beta} \delta_{\gamma}{ }_{\gamma}-\delta^{\rho}{ }_{\alpha} \delta^{\sigma}{ }_{\beta} g^{\nu \beta} \delta_{\gamma}^{\mu}}_{2 \& 6}) g^{\nu \sigma} \\
& +(\underbrace{\delta^{\mu}{ }_{\beta} \delta^{\nu}{ }_{\alpha} g^{\rho \beta} \delta^{\sigma}{ }_{\gamma}-\delta^{\rho}{ }_{\beta} \delta^{\sigma}{ }_{\alpha} g^{\mu \beta} \delta^{\nu}{ }_{\gamma}}_{3 \& 7}) g^{\mu \rho}-(\underbrace{\delta^{\mu}{ }_{\beta} \delta^{\nu}{ }_{\alpha} g^{\sigma \beta} \delta^{\rho}{ }_{\gamma}-\delta^{\rho}{ }_{\alpha} \delta^{\sigma}{ }_{\beta} g^{\mu \beta} \delta_{\gamma}^{\nu}}_{4 \& 5}) g^{\mu \sigma}, \\
& \therefore\left[\mathcal{J}^{\mu \nu}, \mathcal{J}^{\rho \sigma}\right]=i\left(g^{\nu \rho} \mathcal{J}^{\mu \sigma}-g^{\mu \rho} \mathcal{J}^{\nu \sigma}-g^{\nu \sigma} \mathcal{J}^{\mu \rho}+g^{\mu \sigma} \mathcal{J}^{\nu \rho}\right) \text {. } \tag{2.1}
\end{align*}
$$

$\grave{\sigma} \pi \epsilon \rho \epsilon \notin \delta \epsilon \iota \delta \epsilon \bar{\iota} \xi \alpha \iota$
b) Like part (a) above, we are to show that the matrices

$$
S^{\mu \nu}=\frac{i}{4}\left[\gamma^{\mu}, \gamma^{\nu}\right]
$$

generate the Lorentz algebra,

$$
\left[S^{\mu \nu}, S^{\rho \sigma}\right]=i\left(g^{\nu \rho} S^{\mu \sigma}-g^{\mu \rho} S^{\nu \sigma}-g^{\nu \sigma} S^{\mu \rho}+g^{\mu \sigma} S^{\nu \rho}\right)
$$

As Pascal wrote, 'I apologize for the length of this [proof], for I did not have time to make it short.' Before we proceed directly, let's outline the derivation so that the algebra is clear. First, we will fully expand the commutator of $S^{\mu \nu}$ with $S^{\rho \sigma}$. We will have 8 terms. For each of those terms, we will use the anticommutation identity $\gamma^{\mu} \gamma^{\nu}=2 g^{\mu \nu}-\gamma^{\nu} \gamma^{\mu}$ to rewrite the middle of each term. By repeated use of the anticommutation relations, it can be shown that

$$
\begin{equation*}
\gamma^{\mu} \gamma^{\rho} \gamma^{\nu} \gamma^{\sigma}=\gamma^{\sigma} \gamma^{\nu} \gamma^{\rho} \gamma^{\mu}+2\left(g^{\nu \sigma} \gamma^{\mu} \gamma^{\rho}-g^{\rho \sigma} \gamma^{\mu} \gamma^{\nu}+g^{\mu \sigma} \gamma^{\rho} \gamma^{\nu}-g^{\rho \nu} \gamma^{\sigma} \gamma^{\mu}+g^{\mu \nu} \gamma^{\sigma} \gamma^{\rho}-g^{\mu \rho} \gamma^{\sigma} \gamma^{\nu}\right) \tag{2.2}
\end{equation*}
$$

This will be used to cancel many terms and multiply the whole expression by 2 before we contract back to terms involving $S^{\mu \nu}$'s. Let us begin.

$$
\begin{aligned}
{\left[S^{\mu \nu}, S^{\rho \sigma}\right]=} & -\frac{1}{16}\left(\left[\gamma^{\mu} \gamma^{\nu}-\gamma^{\nu} \gamma^{\mu}, \gamma^{\rho} \gamma^{\sigma}-\gamma^{\sigma} \gamma^{\rho}\right]\right) \\
= & -\frac{1}{16}\left(\left[\gamma^{\mu} \gamma^{\nu}, \gamma^{\rho} \gamma^{\sigma}\right]-\left[\gamma^{\mu} \gamma^{\nu}, \gamma^{\sigma} \gamma^{\rho}\right]-\left[\gamma^{\nu} \gamma^{\mu}, \gamma^{\rho} \gamma^{\sigma}\right]+\left[\gamma^{\nu} \gamma^{\mu}, \gamma^{\sigma} \gamma^{\rho}\right]\right) \\
= & -\frac{1}{16}\left(\gamma^{\mu} \gamma^{\nu} \gamma^{\rho} \gamma^{\sigma}-\gamma^{\rho} \gamma^{\sigma} \gamma^{\mu} \gamma^{\nu}-\gamma^{\mu} \gamma^{\nu} \gamma^{\sigma} \gamma^{\rho}+\gamma^{\sigma} \gamma^{\rho} \gamma^{\mu} \gamma^{\nu}\right. \\
& \left.\quad-\gamma^{\nu} \gamma^{\mu} \gamma^{\rho} \gamma^{\sigma}+\gamma^{\rho} \gamma^{\sigma} \gamma^{\nu} \gamma^{\mu}+\gamma^{\nu} \gamma^{\mu} \gamma^{\sigma} \gamma^{\rho}-\gamma^{\sigma} \gamma^{\rho} \gamma^{\nu} \gamma^{\mu}\right), \\
=- & -\frac{1}{16}\left(2 g^{\nu \rho} \gamma^{\mu} \gamma^{\sigma}-\gamma^{\mu} \gamma^{\rho} \gamma^{\nu} \gamma^{\sigma}-2 g^{\nu \rho} \gamma^{\sigma} \gamma^{\mu}+\gamma^{\sigma} \gamma^{\nu} \gamma^{\rho} \gamma^{\mu}\right. \\
& \quad-2 g^{\sigma \mu} \gamma^{\rho} \gamma^{\nu}+\gamma^{\rho} \gamma^{\mu} \gamma^{\sigma} \gamma^{\nu}+2 g^{\sigma \mu} \gamma^{\nu} \gamma^{\rho}-\gamma^{\nu} \gamma^{\sigma} \gamma^{\mu} \gamma^{\rho} \\
& \quad-2 g^{\nu \sigma} \gamma^{\mu} \gamma^{\rho}+\gamma^{\mu} \gamma^{\sigma} \gamma^{\nu} \gamma^{\rho}+2 g^{\nu \sigma} \gamma^{\rho} \gamma^{\mu}-\gamma^{\rho} \gamma^{\nu} \gamma^{\sigma} \gamma^{\mu} \\
& \left.+2 g^{\mu \rho} \gamma^{\sigma} \gamma^{\nu}-\gamma^{\sigma} \gamma^{\mu} \gamma^{\rho} \gamma^{\nu}-2 g^{\mu \rho} \gamma^{\nu} \gamma^{\sigma}+\gamma^{\nu} \gamma^{\rho} \gamma^{\mu} \gamma^{\sigma}\right)
\end{aligned}
$$

Now, the rest of the derivation is a consequence of (2.2). Because each $\gamma^{\mu} \gamma^{\nu} \gamma^{\rho} \gamma^{\sigma}$ term is equal to its complete antisymmetrization $\gamma^{\sigma} \gamma^{\rho} \gamma^{\nu} \gamma^{\mu}$ together with six $g^{\nu \sigma}$-like terms, all terms not involving the metric tensor will cancel each other. When we add all of the contributions from all of the cancellings, sixteen of the added twenty-four terms will cancel each other and the eight remaining will have the effect of multiplying each of the $g^{\nu \sigma}$-like terms by two. So after this is done in a couple of pages of algebra that I am not courageous enough to type, the commutator is reduced to

$$
\begin{gather*}
{\left[S^{\mu \nu}, S^{\rho \sigma}\right]=\frac{1}{4}\left(-g^{\nu \rho}\left(\gamma^{\mu} \gamma^{\sigma}-\gamma^{\sigma} \gamma^{\mu}\right)-g^{\mu \sigma}\left(\gamma^{\nu} \gamma^{\rho}-\gamma^{\rho} \gamma^{\nu}\right)+g^{\nu \sigma}\left(\gamma^{\mu} \gamma^{\rho}-\gamma^{\rho} \gamma^{\mu}\right)+g^{\mu \rho}\left(\gamma^{\nu} \gamma^{\sigma}-\gamma^{\sigma} \gamma^{\nu}\right)\right) .} \\
\therefore\left[S^{\mu \nu}, S^{\rho \sigma}\right]=i\left(g^{\nu \rho} S^{\mu \sigma}-g^{\mu \rho} S^{\nu \sigma}-g^{\nu \sigma} S^{\mu \rho}+g^{\mu \sigma} S^{\nu \rho}\right) . \tag{2.3}
\end{gather*}
$$

c) We are to show the explicit formulations of the Lorentz boost matrices $\Lambda(\eta)$ along the x^{3} direction in both vector and spinor representations. These are generically given by

$$
\Lambda(\omega)=e^{-\frac{i}{2} \omega_{\mu \nu} J^{\mu \nu}}
$$

where $J^{\mu \nu}$ are the representation matrices of the algebra and $\omega_{\mu \nu}$ parameterize the transformation group element.

In the vector representation, this matrix is,

$$
\Lambda(\eta)=\left(\begin{array}{cccc}
\cosh (\eta) & 0 & 0 & \sinh (\eta) \tag{2.4}\\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
\sinh (\eta) & 0 & 0 & \cosh (\eta)
\end{array}\right)
$$

In the spinor representation, this matrix is
$\Lambda(\eta)=\left(\begin{array}{cccc}\cosh (\eta / 2)-\sinh (\eta / 2) & 0 & 0 & 0 \\ 0 & \cosh (\eta / 2)+\sinh (\eta / 2) & 0 & 0 \\ 0 & 0 & \cosh (\eta / 2)+\sinh (\eta / 2) & 0 \\ 0 & 0 & 0 & \cosh (\eta / 2)-\sinh (\eta / 2)\end{array}\right)$
So,

$$
\Lambda(\eta)=\left(\begin{array}{cccc}
e^{-\eta / 2} & 0 & 0 & 0 \tag{2.5}\\
0 & e^{\eta / 2} & 0 & 0 \\
0 & 0 & e^{\eta / 2} & 0 \\
0 & 0 & 0 & e^{-\eta / 2}
\end{array}\right)
$$

d) No components of the Dirac spinor are invariant under a nontrivial boost.
e) Like part (c) above, we are to explicitly write out the rotation matrices $\Lambda(\theta)$ corresponding to a rotation about the x^{3} axis.

In the vector representation, this matrix is given by

$$
\Lambda(\theta)=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \tag{2.6}\\
0 & \cos \theta & -\sin \theta & 0 \\
0 & \sin \theta & \cos \theta & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

In the spinor representation, this matrix is given by

$$
\Lambda(\theta)=\left(\begin{array}{cccc}
e^{-i \theta / 2} & 0 & 0 & 0 \tag{2.7}\\
0 & e^{i \theta / 2} & 0 & 0 \\
0 & 0 & e^{-i \theta / 2} & 0 \\
0 & 0 & 0 & e^{i \theta / 2}
\end{array}\right)
$$

f) The vectors are symmetric under 2π rotations and so are unchanged under a 'complete' rotation. Spinors, however, are symmetric under 4π rotations are therefore only 'half-way back' under a 2π rotation.
3. a) Let us define the chiral transformation to be given by $\psi \rightarrow e^{i \alpha \gamma^{5}} \psi$. How does the conjugate spinor $\bar{\psi}$ transform?

We may begin to compute this transformation directly.

$$
\begin{aligned}
\bar{\psi} \rightarrow \bar{\psi}^{\prime} & =\psi^{\prime \dagger} \gamma^{0} \\
& =\left(e^{i \alpha \gamma^{5}} \psi\right)^{\dagger} \gamma^{0} \\
& =\psi^{\dagger} e^{-i \alpha \gamma^{5}} \gamma^{0} .
\end{aligned}
$$

When we expand $e^{-i \alpha \gamma^{5}}$ in its Taylor series, we see that because γ^{0} anticommutes with each of the γ^{5} terms, we may bring the γ^{0} to the left of the exponential with the cost of a change in the sign of the exponent. Therefore

$$
\begin{equation*}
\bar{\psi} \rightarrow \bar{\psi} e^{i \alpha \gamma^{5}} \tag{3.1}
\end{equation*}
$$

b) We are to show the transformation properties of the vector $V^{\mu}=\bar{\psi} \gamma^{\mu} \psi$.

We can compute this transformation directly. Note that γ^{5} anticommutes with all γ^{μ}.

$$
\begin{aligned}
V^{\mu}=\bar{\psi} \gamma^{\mu} \psi & \rightarrow \bar{\psi} e^{i \alpha \gamma^{5}} \gamma^{\mu} e^{i \alpha \gamma^{5}} \psi \\
& =\bar{\psi} \gamma^{\mu} e^{-i \alpha \gamma^{5}} e^{i \alpha \gamma^{5}} \psi \\
& =\bar{\psi} \gamma^{\mu} \psi=V^{\mu}
\end{aligned}
$$

Therefore,

$$
\begin{equation*}
V^{\mu} \rightarrow V^{\mu} \tag{3.2}
\end{equation*}
$$

c) We must show that the Dirac Lagrangian $\mathcal{L}=\bar{\psi}\left(i \gamma^{\mu} \partial_{\mu}-m\right) \psi$ is invariant under chiral transformations in the the massless case but is not so when $m \neq 0$.

Note that because the vectors are invariant, $\partial_{\mu} \rightarrow \partial_{\mu}$. Therefore, we may directly compute the transformation in each case. Let us say that $m=0$.

$$
\begin{aligned}
\mathcal{L}=\bar{\psi} i \gamma^{\mu} \partial_{\mu} \psi \rightarrow \mathcal{L}^{\prime} & =\bar{\psi} i e^{i \alpha \gamma^{5}} \gamma^{\mu} e^{i \alpha \gamma^{5}} \partial_{\mu} \\
& =\bar{\psi} i \gamma^{\mu} e^{-i \alpha \gamma^{5}} e^{i \alpha \gamma^{5}} \partial_{\mu} \psi \\
& =\bar{\psi} i \gamma^{\mu} \partial_{\mu} \psi=\mathcal{L}
\end{aligned}
$$

Therefore the Lagrangian is invariant if $m=0$. On the other hand, if $m \neq 0$,

$$
\begin{aligned}
\mathcal{L}=\bar{\psi} i \gamma^{\mu} \partial_{\mu} \psi-\bar{\psi} m \psi \rightarrow \mathcal{L}^{\prime} & =\bar{\psi} i \gamma^{\mu} \partial_{\mu} \psi-\bar{\psi} e^{i \alpha \gamma^{5}} m e^{i \alpha \gamma^{5}} \psi \\
& =\bar{\psi} i \gamma^{\mu} \partial_{\mu} \psi-\bar{\psi} m e^{2 i \alpha \gamma^{5}} \psi \neq \mathcal{L} .
\end{aligned}
$$

It is clear that the Lagrangian is not invariant under the chiral transformation generally.
d) The most general Noether current is

$$
j^{\mu}=\frac{\partial \mathcal{L}}{\partial\left(\partial_{\mu} \phi\right)} \delta \phi(x)-\left(\frac{\partial \mathcal{L}}{\partial\left(\partial_{\mu} \phi\right)} \partial_{\nu} \phi(x)-\mathcal{L} \delta^{\mu}{ }_{\nu}\right) \delta x^{\nu}
$$

where $\delta \phi$ is the total variation of the field and δx^{ν} is the coordinate variation. In the chiral transformation, $\delta x^{\nu}=0$ and ϕ is the Dirac spinor field. So the Noether current in our case is given by,

$$
j_{5}^{\mu}=\frac{\partial \mathcal{L}}{\partial\left(\partial_{\mu} \psi\right)} \delta \psi+\frac{\partial \mathcal{L}}{\partial\left(\partial_{\mu} \bar{\psi}\right)} \delta \bar{\psi}
$$

Now, first we note that

$$
\frac{\partial \mathcal{L}}{\partial\left(\partial_{\mu} \psi\right)}=\bar{\psi} i \gamma^{\mu} \quad \text { and } \quad \frac{\partial \mathcal{L}}{\partial\left(\partial_{\mu} \bar{\psi}\right)}=0 .
$$

To compute the conserved current, we must find $\delta \psi$. We know $\psi \rightarrow \psi^{\prime}=e^{i \alpha \gamma^{5}} \sim\left(1+i \alpha \gamma^{5}\right) \psi$, so $\delta \psi \sim i \gamma^{5} \psi$. Therefore, our conserved current is

$$
\begin{equation*}
j_{5}^{\mu}=-\bar{\psi} \gamma^{\mu} \gamma^{5} \psi \tag{3.3}
\end{equation*}
$$

Note that Peskin and Schroeder write the conserved current as $j_{5}^{\mu}=\bar{\psi} \gamma^{\mu} \gamma^{5} \psi$. This is essentially equivalent to the current above and is likewise conserved.
e) We are to compute the divergence of the Noether current generally (i.e. when there is a possibly non-zero mass). We note that the Dirac equation implies that $\gamma^{\mu} \partial_{\mu} \psi=-i m \psi$ and $\partial_{\mu} \bar{\psi} \gamma^{\mu}=$ $i m \bar{\psi}$. Therefore, we may compute the divergence directly.

$$
\begin{align*}
\partial_{\mu} j_{5}^{\mu} & =-\left(\partial_{\mu} \bar{\psi}\right) \gamma^{\mu} \gamma^{5} \psi-\bar{\psi} \gamma^{\mu} \gamma^{5} \partial_{\mu} \psi \\
& =-\left(\partial_{\mu} \bar{\psi}\right) \gamma^{\mu} \gamma^{5} \psi+\bar{\psi} \gamma^{5} \gamma^{\mu} \partial_{\mu} \psi, \\
& =-i m \bar{\psi} \gamma^{5} \psi-i m \bar{\psi} \gamma^{5} \psi, \\
& \therefore \partial_{\mu} j_{5}^{\mu}=-i 2 m \bar{\psi} \gamma^{5} \psi . \tag{3.4}
\end{align*}
$$

Again, this is consistent with the sign convention we derived for j_{5}^{μ} but differs from Peskin and Schroeder.
4. a) We are to find unitary operators \mathcal{C} and \mathcal{P} and an anti-unitary operator \mathcal{T} that give the standard transformations of the complex Klein-Gordon field.

Recall that the complex Klein-Gordon field may be written

$$
\begin{aligned}
\phi(x) & =\int \frac{d^{3} p}{(2 \pi)^{3}} \frac{1}{\sqrt{2 E_{\mathbf{p}}}}\left(a_{\mathbf{p}} e^{-i \mathbf{p x}}+b_{\mathbf{p}}^{\dagger} e^{i \mathbf{p x}}\right) \\
\phi^{*}(x) & -\int \frac{d^{3} p}{(2 \pi)^{3}} \frac{1}{\sqrt{2 E_{\mathbf{p}}}}\left(a_{\mathbf{p}}^{\dagger} e^{i \mathbf{p x}}+b_{\mathbf{p}} e^{-i \mathbf{p x}}\right)
\end{aligned}
$$

We will proceed by ansatz and propose each operator's transformation on the ladder operators and then verify the transformation properties of the field itself.

Parity

We must to define an operator \mathcal{P} such that $\mathcal{P} \phi(t, \mathbf{x}) \mathcal{P}^{\dagger}=\phi(t,-\mathbf{x})$. Let the parity transformations of the ladder operators to be given by

$$
\mathcal{P} a_{\mathbf{p}} \mathcal{P}^{\dagger}=\eta_{a} a_{-\mathbf{p}} \quad \text { and } \quad \mathcal{P} b_{\mathbf{p}} \mathcal{P}^{\dagger}=\eta_{b} b_{-\mathbf{p}}
$$

We claim that the desired transformation will occur (with a condition on η). Clearly, these transformations imply that

$$
\mathcal{P} \phi(t, \mathbf{x}) \mathcal{P}^{\dagger}=\int \frac{d^{3} p}{(2 \pi)^{3}} \frac{1}{\sqrt{2 E_{\mathbf{p}}}}\left(\eta_{a} a_{-\mathbf{p}} e^{-i \mathbf{p x}}+\eta_{b}^{*} b_{-\mathbf{p}}^{\dagger} e^{i \mathbf{p x}}\right) \sim \phi(t,-\mathbf{x})
$$

If we want $\mathcal{P} \phi(t, \mathbf{x}) \mathcal{P}^{\dagger}=\phi(t,-\mathbf{x})$ up to a phase η_{a}, then it is clear that η_{a} must equal η_{b}^{*} in general. More so, however, if we want true equality we demand that $\eta_{a}=\eta_{b}^{*}=1$.

Charge Conjugation

We must to define an operator \mathcal{C} such that $\mathcal{C} \phi(t, \mathbf{x}) \mathcal{C}^{\dagger}=\phi^{*}(t, \mathbf{x})$. Let the charge conjugation transformations of the ladder operators be given by

$$
\mathcal{C} a_{\mathbf{p}} \mathcal{C}^{\dagger}=b_{\mathbf{p}} \quad \text { and } \quad \mathcal{C} b_{\mathbf{p}} \mathcal{C}^{\dagger}=a_{\mathbf{p}}
$$

These transformations clearly show that

$$
\mathcal{C} \phi(t, \mathbf{x}) \mathcal{C}^{\dagger}=\int \frac{d^{3} p}{(2 \pi)^{3}} \frac{1}{\sqrt{2 E_{\mathbf{p}}}}\left(b_{\mathbf{p}} e^{-i \mathbf{p} \mathbf{x}}+a_{\mathbf{p}}^{\dagger} e^{i \mathbf{p x}}\right)=\phi^{*}(t, \mathbf{x}) .
$$

Time Reversal

We must to define an operator \mathcal{T} such that $\mathcal{T} \phi(t, \mathbf{x}) \mathcal{T}^{\dagger}=\phi(-t, \mathbf{x})$. Let the anti-unitary time reversal transformations of the ladder operators be given by

$$
\mathcal{T} a_{\mathbf{p}} \mathcal{T}^{\dagger}=a_{-\mathbf{p}} \quad \text { and } \quad \mathcal{T} b_{\mathbf{p}} \mathcal{T}^{\dagger}=b_{-\mathbf{p}}
$$

Note that when we act with \mathcal{T} on the field ϕ, because it is anti-unitary, we must take the complex conjugate of each of the exponential terms as we 'bring \mathcal{T} in.' This yields the transformation,

$$
\mathcal{T} \phi(t, \mathbf{x}) \mathcal{T}^{\dagger}=\int \frac{d^{3} p}{(2 \pi)^{3}} \frac{1}{\sqrt{2 E_{\mathbf{p}}}}\left(a_{-\mathbf{p}} e^{i \mathbf{p x}}+b_{-\mathbf{p}}^{\dagger} e^{-i \mathbf{p} \mathbf{x}}\right)=\phi(-t, \mathbf{x})
$$

b) We are to check the transformation properties of the current

$$
J^{\mu}=i\left[\phi^{*}\left(\partial^{\mu} \phi\right)-\left(\partial^{\mu} \phi^{*}\right) \phi\right],
$$

under \mathcal{C}, \mathcal{P}, and \mathcal{T}. Let us do each in turn.

Parity

Note that under parity, $\partial^{\mu} \rightarrow \partial_{\mu}$.

$$
\begin{aligned}
\mathcal{P} J^{\mu} \mathcal{P}^{\dagger} & =\mathcal{P} i\left[\phi^{*}\left(\partial^{\mu} \phi\right)-\left(\partial^{\mu} \phi^{*}\right) \phi\right] \mathcal{P}^{\dagger} \\
& =i\left[\mathcal{P} \phi^{*} \mathcal{P}^{\dagger} \mathcal{P} \partial^{\mu} \phi \mathcal{P}^{\dagger}-\mathcal{P} \partial^{\mu} \phi^{*} \mathcal{P}^{\dagger} \mathcal{P} \phi \mathcal{P}^{\dagger}\right] \\
& =i\left[\phi^{*}(t,-\mathbf{x})\left(\partial_{\mu} \phi(t,-\mathbf{x})\right)-\left(\partial_{\mu} \phi^{*}(t,-\mathbf{x})\right) \phi(t,-\mathbf{x})\right]
\end{aligned}
$$

$$
\begin{equation*}
\therefore \mathcal{P} J^{\mu} \mathcal{P}^{\dagger}=J_{\mu} \tag{4.1}
\end{equation*}
$$

Charge Conjugation

$$
\begin{align*}
\mathcal{C} J^{\mu} \mathcal{C}^{\dagger}= & \mathcal{C} i\left[\phi^{*}\left(\partial^{\mu} \phi\right)-\left(\partial^{\mu} \phi^{*}\right) \phi\right] \mathcal{C}^{\dagger}, \\
= & i\left[\mathcal{C} \phi^{*} \mathcal{C}^{\dagger} \mathcal{C} \partial^{\mu} \phi \mathcal{C}^{\dagger}-\mathcal{C} \partial^{\mu} \phi^{*} \mathcal{C}^{\dagger} \mathcal{C} \phi \mathcal{C}^{\dagger}\right], \\
= & i\left[\phi\left(\partial^{\mu} \phi^{*}\right)-\left(\partial^{\mu} \phi\right) \phi^{*}\right], \\
& \therefore \mathcal{C} J^{\mu} \mathcal{C}^{\dagger}=-J^{\mu} . \tag{4.2}
\end{align*}
$$

Time Reversal

Note that under time reversal, $\partial^{\mu} \rightarrow-\partial_{\mu}$ and that \mathcal{T} is anti-unitary.

$$
\begin{align*}
\mathcal{T} J^{\mu} \mathcal{T}^{\dagger}= & \mathcal{T} i\left[\phi^{*}\left(\partial^{\mu} \phi\right)-\left(\partial^{\mu} \phi^{*}\right) \phi\right] \mathcal{T}^{\dagger} \\
& =-i\left[\mathcal{T} \phi^{*} \mathcal{T}^{\dagger} \mathcal{T} \partial^{\mu} \phi \mathcal{T}^{\dagger}-\mathcal{T} \partial^{\mu} \phi^{*} \mathcal{T}^{\dagger} \mathcal{T} \phi \mathcal{T}^{\dagger}\right] \\
= & -i\left[-\mathcal{T} \phi^{*} \mathcal{T}^{\dagger}\left(\partial_{\mu} \mathcal{T} \phi \mathcal{T}^{\dagger}\right)+\left(\partial_{\mu} \mathcal{T} \phi^{*} \mathcal{T}^{\dagger}\right) \mathcal{T} \phi \mathcal{T}^{\dagger}\right] \\
= & i\left[\phi^{*}(-t, \mathbf{x})\left(\partial_{\mu} \phi(-t, \mathbf{x})\right)-\left(\partial_{\mu} \phi^{*}(-t, \mathbf{x})\right) \phi(-t, \mathbf{x})\right] \\
& \therefore \mathcal{T} J^{\mu} \mathcal{T}^{\dagger}=J_{\mu} . \tag{4.3}
\end{align*}
$$

